Probabilistic Principal Geodesic Analysis

نویسندگان

  • Miaomiao Zhang
  • P. Thomas Fletcher
چکیده

Principal geodesic analysis (PGA) is a generalization of principal component analysis (PCA) for dimensionality reduction of data on a Riemannian manifold. Currently PGA is defined as a geometric fit to the data, rather than as a probabilistic model. Inspired by probabilistic PCA, we present a latent variable model for PGA that provides a probabilistic framework for factor analysis on manifolds. To compute maximum likelihood estimates of the parameters in our model, we develop a Monte Carlo Expectation Maximization algorithm, where the expectation is approximated by Hamiltonian Monte Carlo sampling of the latent variables. We demonstrate the ability of our method to recover the ground truth parameters in simulated sphere data, as well as its effectiveness in analyzing shape variability of a corpus callosum data set from human brain images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where nonanalytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the u...

متن کامل

Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability

In this paper, we present a generative Bayesian approach for estimating the low-dimensional latent space of diffeomorphic shape variability in a population of images. We develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis in the space of diffeomorphisms. A sparsity prior in the model results in automatic selection of ...

متن کامل

Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations

Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of th...

متن کامل

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Computing a concise representation of the anatomical variability found in large sets of images is an important first step in many statistical shape analyses. In this paper, we present a generative Bayesian approach for automatic dimensionality reduction of shape variability represented through diffeomorphic mappings. To achieve this, we develop a latent variable model for principal geodesic ana...

متن کامل

Combining Probabilistic Shape-from-Shading and Statistical Facial Shape Models

In this thesis we present an approach to combine a probabilistic Shape-fromShading algorithm with statistical models of facial shapes. Thesis presents how Fisher-Bingham (FB8) distributions are sampled using Gibbs sampling to give normal distributions on the tangent plane. These normal distributions are in turn combined with normal distributions arising from statistical models of facial shapes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013